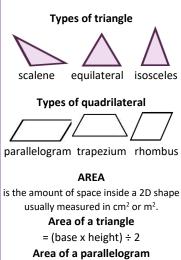


Year 6 Maths Knowledge Organiser

Addition and subtraction


789 + 642 becomes					8	874 – 523 becomes					
		7	8	9			8	7	4		
	+	6	4	2		-	5	2	3		
	1	4	3	1			3	5	1		
1 1 Answer: 1431						A	nsw	er: 3	351		

Roman numerals								
1	Ι	100	С					
5 V		500	D					
10	Х	1000	М					
50	L							

2D shapes

Name	No. of sides				
quadrilateral	4				
pentagon	5				
hexagon	6				
heptagon	7				
octagon	8				
nonagon	9				
decagon	10				

polygon = shape with straight sides regular = all sides/angles the same irregular = sides/angles **not** same

= base x height (Height = perpendicular height)

Place Value Ten thousands Hundreds Units

1 4 7 2 8 6 Hundred thousands Thousands Tens

Multiplication and division vocabulary

Term	Definition	Example			
factor	a number that divides	factors of 12 =			
factor	exactly into another number	1, 2, 3, 4, 6, 12			
common	factors of two numbers that	common factors of 8 and			
factor	are the same	12 = 1, 2, 4			
prime	a number with only 2 factors:	2 2 5 7 11 12 17 10			
number	1 and itself	2, 3, 5, 7, 11, 13, 17, 19			
composite	a number with more than	12			
number	two factors	(it has 6 factors)			
prime factor	a factor that is primo	prime factors of 12 =			
prime factor	a factor that is prime	2, 3			
multiple	a number in another	multiples of 9 =			
multiple	number's times table	9, 18, 27, 36			
common	multiples of two numbers	common multiples of 4			
multiple	that are the same	and 6 = 12, 24			
square	the result when a number	25 (5 ² = 5x5)			
numbers	has been multiplied by itself	49 (7 ² = 7x7)			
cube	the result when a number has	8 (2 ³ = 2x2x2)			
numbers	been multiplied by itself 3 times	27 (3 ³ = 3x3x3)			

Measurement conversions

Month	Days		1	10mm
Days			cent imetre	TOULUL
January	31		1 metre	100cm
February	28 (29		1	1,000 m
in leap			kilometre	
year)				
March	31			
April	30		1 mile	1.6 km
May 31			1	0.625
			kilometre	(⁵ / ₈) mile
June	30			
July 31			1 kilo gram	1,000
				grams
August	31			
September	30		1 litre	1,000
				milli litres
October	31			
November	30			
December	31			
1 year = 365	days (≈			
52 weeks)				
Leap year =	366			
days				
	<u>T</u>	he	e mean	

The mean is a type of average. To find the

mean, add up all the numbers and divide by

how many there are.

3	42 ×	7 b(ecor A	nes 2	
		3	-	~	
	×			7	
	2	3	9	4	
		2	1		
	Ans	wer	239	94	

Short multiplication

	2 2	4	
×	1	6	
2	4	0	
1	4	4	
3	8	4	

Measurement conversions						Lin	e Gra	ıph			
Month January February March April May June July August	Days 31 28 (29 in leap year) 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 31 31 31 31	1 metre 1 kilo me 1 mile 1 kilome	kilometre 1,000 m mile 1.6 km kilometre 0.625 (⁵ / ₈) mile kilogram 1,000 grams		point by li how	e graph ts conne nes to s someth ges in v	ected how ing	20 - 18 - 16 - 14 - 5 u 12 - 10 - 10 - 10 - 10 - 4 - 2 - 0 -	te se sh za	9th 12th 13th 15th 17th Date	
	September30October31November30		1 litre1,000 millilitresCo-ordinatesRead co-ordinates along the x axis (horizontal) first, then the y axis (vertical). E.g. (3,-4) = go right 3, down 4.		Pie Chart A pie chart is a circular chart divided into sections. Each sector shows the						
3D shapes square-bas pyramid		based	triangular- based pyramid		gular sm	rela	tive size 1 value.	e of		bikes car walk bus	plane boat train
Indeed5(the flat sides)5edges8vertices(the points where the edges meet)			6 4		;) ;	¹ / ₂₀ 0.05 59			1 1%	• ÷ 1	00
Volume = the amount of space a 3D shape takes up cm ³ or m ³				s up, usually measured in olume of a cuboid = ength x width x			$\frac{1}{10}$ $\frac{1}{5}$ 1	0.1 0.2 0.2 0.5 0.7 1	209 5 259 509	% ÷ 5 % ÷ 4 % ÷ 2 % ÷ 4	, x3
				<u>Ar</u> full tur	ngles n	360°	Ē	ractior	ns, deci	mals & p	percentages
Long division 432 ÷ 15 becomes <u>2 8</u> r 12			half turn right angle acute angle obtuse angle reflex angle angles on a straight		gle gle ngle gle raight line	180° 90° < 90° > 90° >180° 180°		$\frac{1}{100}$ $\frac{1}{20}$ $\frac{1}{10}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$	0.01 0.05 0.1 0.2 0.25 0.5	1% 5% 10% 20% 25% 50%	÷ 100 ÷ 20 ÷ 10 ÷ 5 ÷ 4 ÷ 2
1 5 4 3 1 1	3 2 0 0 3 2 2 0 1 2	angles inside angles inside a c Short division 98 ÷ 7 becomes			iadrilateral	¾ 0.75 75% ÷ 4, x3 1 1 100% ÷ 1					÷1
Answer: 28 r	98 ÷ 7 becomes 1 4 7 9 ² 8 Answer: 14			horizon	perimeter = measure around the edge (circumference = perimeter) horizontal line parallel lines vertical line perpendicular lines (at right angles) diameter					agilig neter (+ radius x 2)	